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Three-dimensional long-wave instability of 
unidirectional spatially periodic viscous flows 
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(Received 2 May 1995 and in revised form 13 May 1996) 

The long-wave instability of unidirectional spatially periodic flows is investigated 
by means of asymptotic expansions. It is shown that the wavevector of the most 
dangerous disturbances is generally inclined to the direction of the basic stream. A 
new type of long-wave oscillatory instability is discovered. and a comparison with 
results of previous investigations is performed. 

1. Introduction 
The phenomenon of spontaneous generation of large-scale structures by small- 

scale flows is observed in different physical contexts (coherent structures in turbulent 
flows, atmospheric cyclones, etc.) The nature of this phenomenon is not yet fully 
clear. Kraichnan (1967, 1976) suggested that the large-scale structures are produced 
by an inverse cascade driven by the long-wavelength instability of small-scale flows. 
However, the details of this process are unknown. That is why the investigation of 
particular relatively simple cases may be useful for solving this intriguing problem. 

In the 1950s, Kolmogorov proposed investigating the stability of the flow generated 
by an unidirectional spatially periodic force with a sinusoidal velocity profile, in order 
to understand the cascade processes in turbulent flows. The linear stability theory 
was developed by Meshalkin & Sinai (1961) who found that the Kolmogorov flow is 
unstable with respect to long-wavelength disturbances, unlike the flows in channels 
and boundary layers which are subject to short-wavelength instabilities. The nonlinear 
evolution of long-wavelength disturbances, which is governed by some modifications 
of the Cahn--Hilliard equation (Nepomnyashchy 1976; Sivashinsky 1985), mimics the 
spontaneous generation of large-scale structures by small-scale flows and the inverse 
cascade (She 1987). 

It is generally accepted now that the investigation of long-wavelength instabilities 
of flows generated by an external force could help to understand the nature of the 
self-organization of flow into large-scale structures. Up to now, extensive investi- 
gation has been concentrated mainly on the Kolmogorov flow (see E & Shu 1993; 
Borue & Orszag 1996 and reference therein). Even the linear stability has been de- 
veloped only for some simple particular classes of primary flows. The existence of a 
two-dimensional long-wave instability was established by Yudovich (1966) in the case 
of an arbitrary parallel spatially periodic flow 

u = (O,UZ(Xl) ) ,  U?(XI + L , )  = U Z ( X I ) .  (1.1) 

t Also Centre Emile Borel, lnstitut Henri Poincare. 75231 Paris CEDEX 05, France. 
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A generalization of the long-wave stability theory in the case of an unidirectional 
flow periodic in two coordinates 

u = (O,U2(xI,x3),0), UZ(X1 +Ll,x3) == U2(xl,x3 + L3) = UZ(x17x3) (1.2) 

can be found in Shtilman & Sivashinsky (1986), Yakhot & Sivashinsky (1987) and 
Brutyan & Krapivsky (1991). 

It should be noted that the abovementioned investigations were incomplete in the 
following sense : periodic boundary conditions in directions normal to the direction 
of the basic flow were postulated from the very beginning. However, there is a 
crucial difference between flows in a channel, where the disturbances certainly satisfy 
the same boundary conditions as the basic flow, and flows in an unbounded space 
generated by an external periodic force. In the latter case, the flow is not necessarily 
periodic, and the only physical restriction for disturbances is boundness. This means 
that the disturbances can be considered in the form of Floquet functions, e.g. in the 
case (1.1) 

Gotoh, Yamada & Mizushima (1983) were the first investigators who considered the 
stability of flows with respect to disturbances in the form (1.3). However, only in 
the remarkable paper of Dubrulle & Frisch (1991) was a really non-trivial result 
obtained: in the generic case, the wavevector of the most dangerous disturbance of 
the flow (1.1) is inclined to the direction of the basic flow. 

In the present paper, we perform an investigation of the long-wave instability 
of unidirectional flows (1.2) periodic in two coordinates with respect to arbitrary 
infinitesimal bounded disturbances. We obtain an equation determining an explicit 
general expression for growth rates of long-wave disturbances, which makes it possible 
to determine the wavevector's direction for the most dangerous disturbance, to find 
the critical Reynolds number and to verify the results obtained by previous authors. 

This paper is organized as follows. In 42 the derivation of the general dispersion 
relation is presented. In 443 and 4 we consider some particular flows of the type (1.1) 
and (1.2), respectively. Section 5 contains some concluding remarks. 

d = w(x1) exp[i(lclxl + 1~2x2) + S t ] ,  w(x1 + L1) = w(x1). (1.3) 

2. Stability of periodic unidirectional flows 
The problem is governed by the system of Navier-Stokes equations 

(V * u) = 0, 
au 
- + (u*V)U = -Vp + VAU + f 
at 

where the dimensionless parameter v is the inverse of the Reynolds number: v = 1/Re. 
We assume that three-dimensional incompressible motion is generated by a steady 

external body force, having a sole coordinate different from zero f = (O , f2 ,0 ) .  
The function f 2  = f 2 ( ~ 1 , ~ 3 )  is assumed to be periodic in two spatial coordinates: 
f2(x1 + L1,x3) = f2(x1,x3 + L3) = f2(x1,x3). We suppose that the mean value of the 
function f 2  over the periodicity cell is zero. We assume also that it is possible to 
represent the function f 2  by an infinite Fourier series 
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where the prime denotes exclusion of the term (m,n) = (0,O). Thus, 

( f2(XI ,X3))  = fo0  = 0 3 

where the averaging operation is defined by the formula 
L3 1 

( . ) = ~ 1"' 1 . dxldx?. 
LlLi 0 

2.1. Basic flow) 
For any v, the problem (2.1) has a particular solution describing a steady spatially 
periodic parallel flow { d o )  = (0,u2,0), p(') = P } ,  where u2 = u2(x1,x3) is a periodic 
function with 

UZ(X1 + LI, x3) = U2(XI, x3 + L3) = U2(XI9X3) .  (2.4) 
This solution satisfies the following reduced system of equations : 

( 2 . 5 ~ )  
(2.5b) 
( 2 . 5 ~ )  

where 8, = c?/?x,, i = 1,2,3. Because of Galileo's principle, we can add the condition 

(u*)  = 0. (2.6) 

Equations ( 2 . 5 ~ )  and ( 2 . 5 ~ )  lead to P = P(x2). Averaging equation (2.5b), we obtain 
(d2P(x*)) = 0, according to (2.2) and (2.6). Thus, we get 

P = const. (2.7) 

(2.8) 

Using the result (2.7), we obtain from (2.5b): 

V A U ~  + f 2  = 0. 

Conditions (2.4), (2.6) and (2.8) define the function u2 uniquely. 
Let us define the operator A-' on the class of the spatially periodic functions 

g(x1 + L1,x3) = g(xl,x3 + L3) = g(xl,.x3) with zero average value (g(xI,x;)) = 0 by 
means of the formula 

where g,, are Fourier coefficients of the function g(xI ,x3)  and the prime denotes 
exclusion of the term (m, n )  = (0,O). 

We can write u2 = -v-'A-lf7. According to the definition (2.9), the mean value of 
any function A-lf? is zero for all f 2 .  

2.2. Stability problem 
One can expect that the basic parallel flow u(O) is unstable for sufficiently small values 
of v .  The instability will be analysed by means of the linear stability theory. Let us 
impose a small disturbance d = (u',,u;,u;),p' on the basic solution by the following 
substitution : 

u + u(O) + uI, 

p -+ p'0' + p l .  
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Neglecting all the nonlinear terms we obtain the following system of equations : 
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a,u; + a 2 U ;  + a3u; = 0, 
atu; + U 2 a 2 U ;  = -alpi + V A U ; ,  

a,u; + u2a2u; + alu2u; + a3u2u; = 
atu; + u2a2u; = + V A U ;  

where A = a; + a; + a:, at = a/at, ai = a / a x i ,  i = i,2,3. 

+ v ~ u ; ,  

We shall seek a solution of the system (2.10) in the following form: 

u’ = w’(xl, x2, x3)eSt,  
p’ = P ’ ( X ~ , X ~ ,  x3)est, 

(2.10) 

where S is the growth rate, and the functions w’,P’ are bounded on R3 including the 
points x j  -+ co, j = 1,2,3. 

Thus we obtain the following eigenvalue problem for the functions P’ and w’:  

(2.11) 1 v - wi  = 0, 
s w ;  + U2a2W; = -alp’ + YAW;, 

sw; + U2a2W;  + alu2w; + a3U2W; = -a2p‘ + v ~ w ; ,  
sw; + U2a2W;  = -a3pi + YAW;. 

Since the coefficients in (2.11) are periodic in space, it is natural to assume that the 
eigenfunctions correspond to an irreducible one-dimensional representation of the 
Abelian group of discrete translations x1 + x1 + nL1, x3 -+ x3 + mL3, n, rn are 
integer. Therefore, we represent the solution in the form of Floquet-Bloch functions 

w ’ ( x l ,  x2, x 3 )  = w(xl ,  x3)ei(H.r), 
P(x1 ,  x2, x3) = P(x1, x3)ei(K.r) 

where K = ( I C ~ , I C ~ , K ~ )  is the wavevector and Y = ( x I , x 2 , x 3 )  is the radius vector. 
Because our goal is to find the sufficient conditions for the instability, we do not 
investigate here the completeness of the system of eigenfunctions, and do not consider 
functions different from (2.12). In (2.12), w(x1, x3) and P(x1, x3) are spatially periodic 
functions 

(2.12) 1 

w(x1 + L1, x3) = w(x1, x3 + L3) = w(x1, x3), 
p(xl +Ll,x3)=p(xl,x3+L3)=P(xl,x3).  

The wavevector K is such that I C ~  is arbitrary, and I C ~  and I C ~  are defined modulo 
2nlL1 and 2n/L3, respectively. 

V - u + iic’u + ilc2u2 = 0, 
U S  + u2uilc2 = -VP + vAu + 2iv(~’  - V)u - Pilc’ - V U ( K ) ~ ,  

02s + u2v2ix2 + ( u  * V)u2 = vAv2 + 2iv(rc’ V)u2 - PiK.2 - V V ~ ( K ) ~  

Substituting (2.12) into (2.11) we obtain 

(2.13) 

where K’ = ( K ~ , I C ~ ) ,  u = (v1,v3)  = (w l ,  w3), u2 = w2. 

2.3. Long-wave asymptotics 
Since we are interested in long-wave asymptotics, take a small parameter E = I K I .  We 
introduce the unit vector n = ic/IKJ (In1 = l), which determines the direction of the 
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wavevector K. The series expansion of the growth rate S is 

s = S(O) + + €*S(*) + ... . (2.14) 

We are not interested in the whole spectrum of growth rates but only in the special 
mode with S(O) = 0, which is responsible for the long-wave instability. We expand u, 
v 2  and P in series 

(2.15) i u = 2, (O) + €U ( l )  + E2U ( 2 )  + ...) 
u2 = z.1"' + e v y  + e2vy + ..., 
P = P (Oi  + €P (') + e2P (*) + ... 

with periodicity conditions 

(2.16) i u ([)(XI + L1, X?)  = 2, qx', x3 + L3) = u ( [ ) (XI ,  x3), 

P ("(XI + L1,Xj )  = P (y~', x3 + L3) = P ( ) ) (XI ,X3) ,  

u* (X I  + L1, x3) = v2 (x1,x3 + L3) = V t ) ( X ' ,  x3), 1 = 0,1,2 )... . ( 1 )  (1) 

Now we substitute expansions (2.14) and (2.15) into (2.13) and collect together the 
terms of the same order in 6 .  Thus, the leading-order problem is 

(2.17~) 
(2.17b) 
(2.17~) 

Applying the divergence operator to (2.17b) we get that AP (O) = 0. Because of the 
spatial periodicity condition (2,16), we deduce that 

P (O) = const. (2.18) 

Now, (2.17b) and (2.18) give Au(Oi = 0, and one can obtain that v ( O )  = const and 
- 

V ?  (O) = v-'A-'(u ('1 - Vuz) + c2 (0) , (2.19) 

where t11O' is a constant, which will be determined from the system up to O(6). Recall 
that according to our definition the mean value of the first term on the right-hand 
side of equation (2.19) is equal to zero. 

(V . 8 (1)) = _ '  1(v (0 )  . (2 .20~)  
V P  ( 1 )  - V A ~  (1)  = -s(')u (0) - iU2u (*)nz - iqp''), (2.20b) 
(u  'IJ V)u2 - vAuil) = -S(')V?) - iu2v?)n2 - iP(')n2 + 2iv(q - V)ur ) ,  (2.20~) 

where q = (nl,n3) = ( T C ~ / ~ K ~ , T C ~ / ~ K ~  ). The - solvability condition - for (2.20~) is (-i(u(O) . 
q ) - iuf)nz) = 0. Now the constant vf' is given by uf)  = - (u  (O) - q )/n2 and (2.19) 
takes the form 

Taking divergence of (2.20b) and performing simple calculations we get 

- 

To O(6) we obtain 

) - 1212 ' (0)  n2, 

~f' = v- 'A-~(u  (O) - V U ~ )  - ( V  (O) * q)/n2. 

P(') = -2in2A-'(u (O) - VUZ) + iv (u  (O) - q ) + p!1). (2.21) 

Note that A-' in (2.21) is defined because of condition (2.6). Applying the operator 
of the gradient to (2.21) and using (2.20b) we obtain 

(2.22) u ( I )  = v -1 A -1 T + v ( ' ,  
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where 
T = S(')v  (O) - 2in2A-I ((v (O) - V)Vu2) + u2in2v (O) + iqP('). 

The solvability condition for (2.22) is the existence condition for A-'. Thus ( T )  has 
to be zero. The solvability condition is S(' )u ('1 + iqP(O) = 0 and after multiplication 
by v(O) and q, we can write 

(2.23) 

(2.24) 
Finally, 

v ('I = inzv-'A-' [uzv (O) - 2A-' ((v (O) * V)VuZ)] + m 
where m will be calculated from the equations of O(e2). We rewrite (2.24) in the 
scalar form: 

(2.25) 

I ~ ( ' ) ( v  (0) . ( 0 ) )  + i(q . 8 (O))p(O) = 0, 
s(')(u (O) * q ) + i(q * q )P(O) = 0. 

__ 
ul(" = in2,-' [hljA-'u2 - 2VjA-2(V~u2)] u y )  + ul('), 1 = 1,3. 

(Summing over the suppressed subscript j is used.) It follows from (2.20~) that 
u(') - - v -1 A -1 { [S") + u2in2 - 2iv(q - V)] v-'(v (O) - Vu2) 

- 
- [s") + u2in2 - 2iv(q * v)] (v  ('1 * q ) / n 2  + P(O)inz + (v  (') - vu2)} + u;), 

- 

where u y )  is a constant which will be determined from the system of O(e2). The 
solvability condition immediately implies 

- s(')(u ('1 - q )/n2 + P(O)in2 = 0. (2.26) 

The conditions (2.23) and (2.26) form the system of homogeneous equations 
~ ( l ) ( v  (0) 21 ( 0 ) )  + i(q . 2, (O))p(O) = 0, 

(2.27) ' 1  $ ' ) (a  (O) * q ) + i(q - q )P(*) = o 
s ( ' ) ( U  (0)  q ) - iniP(0) = 0. 

The system (2.27) is overdetermined and it has only the zero solution S(') = P(O) = 0. 
Thus, 

0;) = v-'A-' { [uzinz - 2iv(q - v)] v-'(u ('1 - vu2) 
- 

- [u2in2 - 2iv(q v)] (v ('1 * q)/n2 + (v - V U ~ ) }  + u;). 

After some calculations, we get 

u t )  = i ( ~ - ~ n ~ V ~ ( u ~ A - ' u 2 )  - 2~-'n,,,A-~V,,,V~u2 
- 

-v-'njA-'u2 - ~ V - ~ ~ ~ A - ' ( A - ~ ( V ~ V ~ U ~ ) V ~ U ~ ) ) U ~ )  + v-'A-'Vu221(1) + u;). (2.28) 

(Summing over the suppressed subscripts rn and j is used.) 
Up to O ( 2 )  we obtain 

(V - u ( 2 ) )  = -i(v (') * q ) - iu2 (1) n2, 
vp(2) - V A ~  (2) = -$')a (0) - iu2D ('In2 - iqP(') - v v  (01, 

(v (') - V)u2 - v Auf) = -S(*)u?) - iu2vf)n2 - iP(')n2 + 2iv(q * V)v;' - vur! 

(2.29~) 
(2.29b) 
(2.29~) 

The solvability condition for (2.29~) is 

((v (') - q + uf)n2) = 0. 
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Thus u f )  = - (v  ( I )  * q )/Q. Taking divergence of (2.29b) we obtain 
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- 

p(2) = (vV . u ( 2 ) )  

+ iA-' { -(V - ( q P ( " ) )  - n2(V - (u2u ( I ) ) )  + 2v(V - ( ( q  - V ) u  ('I))} + p(2), 
and an additional solvability condition does not appear because the expressions with 
A-' contain divergence only but not a constant. We express from (2.29b): 

= v -1 A -1 (S(2 'u  ('I + u2u (')in2 + VP(2) + iqP") - 2iv(q - V ) v  ( l )  + v u  ('1) + 210. 
The solvability condition is 

s ( ~ ' v  (O) + in2(u2u ( l ) )  + iqp(', + v u  (') = 0. (2.30) 

Now we express u y )  from (2.29~):  

,(2) = v-lA-lfS(2) v2 (0 )  + ( u  (2) * V U ~ )  + u2vY)inz + ~ ( I ) i n 2  - 2iv(q * v)vf) + v v r ) ) .  
2 

The solvability condition is 
~ 

~ 

s ( 2 )  v2 (0) + in2(u2uz(") + i n 2 P o  + vv2(0) + ( ( v  (2)  * VU,)) = 0. (2.31) 

Using the notation 
z = S(2)  + v ,  

we obtain from (2.30), (2.31) that 
(2.32) 

where 

A[; = (u2(61JA - 2VjV1)A-2~2), 

M,j = ( ~ 2 A - l  { V ; ( U ~ A - ~ U ~ )  - 2 (A-2(V;Vm~2) V m ~ 2 ) } ) ,  

(2.34) 

(2.35) 

N,; = -(u2(2VmV; + 6,jA)A-2~2) ,  j = 1,3. (2.36) 
The system (2.33) takes the form 

(2.37) 
( T 6 r ;  - b'-'lz;Al;)Uyi + qrPc', = 0, 

~ ' I  ( zq j  - v -1. in2qmAm, 2 + 2v-'iniMj + 2c-'n;qlsNm;)~y) - inzP(l) = 0 

1, j ,  m = 1,3 and summing over the suppressed subscripts m is supposed. 

of pcl) it can be written in the form 
Equation (2.37) is a system of homogeneous equations in v y ) ,  p(l). After elimination 

{ T ( d l j  + n ~ ~ n l n j )  + v-'(--~ljn; + ~ t l ~ t , ~ , j  + 2 n 2 n L ~ ; v - l ) )  = 0, (2.38) 

where 

G m j  =z A m ;  + 2Nm;. (2.39) 
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The system (2.38) has non-zero solutions if the determinant of (2.38) is equal to zero: 

(2.40) 

1, j ,  m = 1,3 and summing over the suppressed subscripts m is supposed. 
The formula (2.40), which determines the long-wave asymptotics of growth rates, 

is the main result of this paper. The rest of the paper is devoted to applications of 
this formula. 

In almost all the previous investigations the wavevector K was taken to be parallel 
to the direction of the flow, i.e. n = (0, 1,O). In this particular case the stability 
criterion (2.40) takes the simple form det[z61j - v-'Ali] = 0, 

(2.41) 

1, j = 1,3, or 

z2v2 - zv trA + det A = 0. 

3. Flows periodic in one direction 
3.1. The Kolmogorov flow 

The first particular case is the Kolmogorov flow (Meshalkin & Sinai 1961) given by 

u1 = 0, 
u2 = sinxl. 

For this flow the matrix A,, is defined in (2.34) takes the form: All  = -A33 = 
l/2,A13 = A31 = 0. The criterion (2.41) now becomes: 

z2v2 - 1/4 = 0. (3.1) 
The roots of (3.1) are z1,2 = fiv-' .  Using (2.32) we obtain 

(3 .2~)  

(3.2b) 

The mode corresponding to S!" as in (3 .2~)  is stable, and the mode corresponding 
to Sf) as in (3.2b) can give instability. The critical value of v (that is, Sf) = 0) is 
v,, = 2-1/2. This is identical with the result of Meshalkin & Sinai (1961). 

We now investigate the Kolmogorov flow in the general case n = (n1,n2,n3). The 
matrices Alj (2.34), GI,  (2.39), and vector Mi (2.35) take the form 

The criterion (2.40) now is 

z2nY2 + 4zn:v-' - ni( 1 - 8n:)(2v)-* = 0. (3.3) 
The roots of (3.3) are 21,2 = -nzv-'(2nT f 2nI T i). Using (2.32) we obtain 

Sf) = -n32v)-1 - v < 0, 
Sf' = -n;v-y4n: - 1/2) - v.  

(3.4a) 
(3.4b) 

The mode corresponding to S12) is stable and the mode corresponding to Sf) (3.4b) 
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can give instability. Noting that the modes depend on nl,n2 only we introduce the 
angle cp between the x2-axis (the direction of the flow) and the direction of wavevector 
K ,  characterizing the of the wavevector: nl = sincp,n2 = coscp and seek angle the 
positive maximum of the function Sf’(cp) where cp E [0,2n]. A simple calculation 
shows that 

Thus, the critical value of v is 2-‘12, which is attained at nl = 0,n2 = 51.  

result of Meshalkin & Sinai (1961) is sufficient. 
So the direction parallel to the flow is the most dangerous one. Therefore, the 

3.2. The result of Yudovich 
The flow 

where y(xl)  is an arbitrary function, was first investigated by Yudovich (1966) in 
the particular case where the wavevector K is parallel to the direction of the flow 
(n = (0,1,0)). The matrix Alj (2.34) is All = -A33 = A,A13 = A31 = 0, where 

A = ( l p ) = -  2 IL’ tp2(xl)dxI. 
L1 0 

The criterion (2.41) now takes the form 
2 2  2 z v  - A  =o .  

The roots of (3.7) are 21,2 = f2v-I. Using (2.32) we obtain 

q2) = 4 v - 1  - v < 0, 
sf’ = A V - 1  - v.  

(3.7) 

( 3 . 8 ~ )  
(3.8b) 

The mode corresponding to S,(2’ (3 .8~)  is a stable one and the mode corresponding to 
Sp) (3.8b) can give non-stability. The critical value of v is 2”’. It is identical with the 
result of Yudovich (1966) for the flow (3.5). 

3.3.  The analysis of Dubrulle 6; Frisch 
For the considered flow (3.5) the matrices Alj (2.34), GI,  (2.39) and vector Mi (2.35) 
take the form: 

where R is defined by (3.6) and 

The criterion (2.40) now takes the form 

z2n,2 + 2 z v - I ~  - n2,v-2A(A - 2 ~ )  = o 
where T = 4 2 4  + 3pv-’n1n2. The roots of (3.10) are 

zl,? = n;v-’(-T f T F 2) 

(3.9) 

(3.10) 
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or, in terms of modes, 
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~1(2) = -niv-’,I - v < o 
~ f ’  = niv-’(A - 2 ~ )  - v. 

(3 .11~)  
(3.11b) 

The mode corresponding to Sp) (3 .11~)  is the stable one and the mode corresponding 
to Sf’ (3.11b) can give instability. 

This is identical with the result of Dubrulle & Frisch (1991) for this flow. 
Under the supposition that n = (0,1,0) (3.11b) takes the form Sf) = Iv-’ -v, which 

is identical to Yudovich (1966), but this direction is not always the dangerous one, as 
will be shown on the simple example in the next subsection. 

3.4. The $ow u2 = sin X I  + 0 sin 2x1 
The particular case of the following one-dimensional basic flow was investigated by 
Henon & Scholl (1991): u1 = 0, u2 = sinxl + 0 sin2x1. For this flow the parameters 
I ( see (3.6) ) and p ( see (3.9) ) are: 1 = (4 + 0‘) /8,p = 30/16. The expression for 
Sf) corresponding to a non-stable mode (3.11b) is 

~ f ’  = n?j [(4 + 0’)(1 - 8ni) - 9onlnz/v] /(8v) - v .  

To show the existence of an instability we introduce the spherical coordinates 

nl(8, q) = sin 8 cos q, 

n3(8, q) = sin 8 sin q. 
n2(8, q) = cos 8, (3.12) 

Thus, 

~ f ’ (8 ,  q) = cos’ 8 [(4 + 0’)(1 - 8 sin’ 8 cos’ q) - 90 sin 8 cos q cos ~ / v ]  /(8v). 

Using the software Mathematica one can obtain that for (i = 4 the maximum of 
Sf’(8, q) is equal to zero, and attained at 8 = 7.014”, q = O”, i.e. the turn of wavevector 
is 7”, where the critical value of v is equal to 0.925197. This is identical with the 
result from Henon & Scholl (1991). The plot of Sf’(8, q) for the critical value of v is 
shown on figure 1. 

3.5. Wavevector of the most dangerous disturbances 
As it was shown above, the mode (3.11b) corresponding to 

Sf’ = ni(A - 8n:I - 6pv-’nlnz)/v - v 

can give instability. Noting that the growth rate depends on nl, 112 only, we introduce 
the angle q characterizing the direction of the wavevector: n1 = sinq, n2 = cosq 
where q E [0,2n]. Then 

Sf’(q) = v-’ cos’ q ( A  - 8I sin2 - 6pv-‘ sin q cos q) - v, 

or, after simplification, 

Sf’(q) = A(2cos4q + cos 2q  - 1)/(2v) - 3p(sin4q + 2 sin 2q)/(4v2) - v. (3.13) 

The conditions for existence of the maximum are 

(3.14) 
dSf)/dq = - 4 4  sin 4 9  + sin 2q)/v + 3p(cos 4 9  + cos 2q)/v2 = 0, 
d’Sf)/dq2 = -2;1(8 cos 4 9  + cos 2q)/v - 6p(2 sin 4q  + sin 2q)/v2 < 0. 
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FIGURE 1. The three-dimensional plot of the growth rate Si2’(Q, cp) corresponding to the unstable 
mode for the flow u2 = sin XI + 4 sin 2x1. 

Equation ( 3 . 1 4 ~ )  has the trivial solution q = n/2,  which does not give a positive 
maximum because Sf’(n/2) = -v < 0. The system of equations (3.14) may be 
transformed to the form 

4sin3q + ycos3cp - 3sincp = 0, (3.1 5a)  
8 cos 4 q  + cos 2 q  + y(2  sin 4 q  + sin 2 q )  > 0, (3.1 5b) 

where y = 3p/(llv). Equation ( 3 . 1 5 ~ )  is simplified by the substitution y = e2iq, which 
transforms it into 

(y i  + 4 ) y 3  - 3y2 + 3 y  + (yi - 4) = 0. 
The result of Yudovich (1966) for this flow is obtained if the system (3.15) has no 
solutions in the region, i.e. the maximum is exceeded on the boundary of the region 
q = 0, and from (3.13) we obtain Sf’(0) = A/v - v and the critical value of v is 

4. Flows periodic in two directions 

The flow 
4.1. Shtilman & Sivashinsky ,pow 

u1 = 0, 
u2 = sinorxl sinPx3, or2 + p2 = 1 

was investigated by Shtilman & Sivashinsky (1986) in case where the wavevector IC is 
parallel to the direction of the flow, i.e. II = (0, 1 ,O) .  In this case the matrix Al, (2.34) 
takes the form 
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Thus, criterion (2.41) gives two growth rates : 

K S. Khazan and A.  A .  Nepomnyashchy 

1 2  2 Si2) = --(a - p ) - v, 

Sf’ = -(a2 - 8 2 )  - v. 
4v 

1 
4v 

( 4 . 1 ~ )  

(4.lb) 

If a2 > p2, the mode corresponding to ( 4 . 1 ~ )  is stable, and the mode correspond- 
ing to (4.1b) is unstable, and if a2 < p2 the mode corresponding to ( 4 . 1 ~ )  is 
unstable and the second one (4.lb) is stable. It is identical with the result of 
Shtilman & Sivashinsky (1986). 

The Shtilman-Sivashinsky flow is investigated in the case where n = (nl, n2, n3). The 
spherical coordinates are introduced by the formulae (3.12). The necessary conditions 
for the existence of a positive maximum of S are 

z2 + a(@, c p ) ~  + b(8, cp) = 0, 
agz + be = 0, 
U,T + b, = 0 

( 4 . 2 ~ )  
(4.2b) 
(4 .2~)  

where u(8, cp) = 1v- l  sin2 28(a2 cos2 cp + p2 sin2 cp), 
b(8, cp) = &vP2 cos4 @[-(a2 - f12)2 + 8(a2 - p2)  sin2 8(a2 cos2 cp - p2 sin2 cp)], 
ag = aa/ae, be = ab/ae, a, = aa/acp, b, = ab/aq. 

Let us first consider (4 .2~)  in the case where a, # 0. Then 

z = -b,/a, = -cos2 8/(4v) < 0, 

and it cannot give a positive maximum. If 

(4.3) 
1 ’ 2  up = - sin 28 sin 2cp(fi2 - a2) = 0, 2v 

then it is easy to see from (4 .2~)  that 

(4.4) 1 2 b - __ cos4 8 sin2 8 sin 2cp(p2 - a ) = 0. 
- 2v2 

Equations (4.3) and (4.4) are equivalent to cp = O,n/2,71,3n/2,2n: or 8 = O,n/2,n. 
The points with 8 = 0,n give a = 0, b = - & v - ~ ( E ~  - p2)2 and 

The points with 8 = 71/2 give a = 0,b = 0 and z = 0. In what follows it may be 
supposed without loss of generality that a < p. Thus, we obtain for points with 
cp = 0, 71, 271 

a = a2 sin2 28/(2v), 
b = c0s4 @[-(a2 - p2)2 + 8a2(a2 - p2) sin2 8]/(16v2). 

The positive root is 
z+ = cos2 8(82 - a2)/(4v) 

and its maximum is 
maxz+ = (p2 - a2)/(4v). 
8=0 
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For points with cp = 7c/2,3~/2 we obtain 

a = p2 sin2 28/(2v), 
b = c0s4 O[-(a2 - p2)2 + 8P2(a2 - p 2 )  sin2 e]/(16v2) 

and the positive root is 

z+ = cos2 e(-p2 sin2 13 + 1P2 sin2 I3 + (x2 - P2)/41)/v. 

There are two possibilities. The first is that sin2 8 2 (p2 - a2)/(4j2) with 

z+ = cos2 @(a2 - B2)/(4v) < 0. 

z+ = cos2 8[ (p2  - a2)/4 - 2 sin2 ep2)/v 
The second one is that sin2 8 < (p2  - g2)(4p2) with 

and the obvious maximum 

max z+ = (p2 - a2)/(4v). 
O=O 

Thus, the Shtilman-Sivashinsky result is also true in the three-dimensional case. 
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4.2. Results of Brutyan & Krapivsky 
Brutyan & Krapivsky investigated the stability of the flow u1 = O,u2 = u ~ ( x I , x ~ )  
in the particular case where the wavevector is parallel to the direction of the flow 
n = (0, 1,O) .  For this flow the matrix A,, (2.34) takes the form 

A,, = 6,jB - 2 4 ,  

where B = (u2A-’u2), Blj  = ( u ~ @ ~ ( A - ~ u , ) ) .  The eigenvalues are 

21,2 = fV-’(B2 - 4B11B33 + 4B:3)”2. 

The growth rate for the unstable mode is 

sf’ = v-’(B* - 4B llB33 + 4Bt3)”2 - v 

and the critical parameter: 

(4.5) 2 114 
VC, = ( B 2  - 4BllB33 + 4B13) 3 

which is identical to the criterion of Brutyan & Krapivsky (1991). 
Taking into account the abovementioned results of Dubrulle & Frisch (see §3.3), we 

can conclude that the investigation of Brutyan & Krapivsky giving (4.5) is incomplete 
because considering the case K = (0, IC, 0) is not enough for a full stability analysis. 

4.3. Oscillatory instability 
Let us consider the following particular case : 

In this case the matrices A,, (2.34), Glj (2.39) and vector M j  (2.35) take the form: 
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where 

E: S. Khazan and A. A. Nepomnyashchy 

The criterion (2.40) takes the form 

z2ny2 + 27v-'(TI + T3) + n;v-2[-(A1 - A3)2 + 2(A1 - A3)(T1 - T3)] = 0 

where 

(Summing over suppressed subscripts is not supposed.) 
Ti = 4Ain: + 3ptv-'n2ni, i = 113. 

(4.7a) 

(4.7b) 

(4.8) 

(4.9) 

The flow (4.6) is the simplest generalization of the one-dimensional flow (3.9) 
considered in $3.3. However, in this case one can find some new features of the 
behaviour of long-wave disturbances. The most interesting difference between flows 
(4.6) and (3.9) is the following one. In contrast to equation (3.11), the roots of 
equation (4.8) can be complex. 

Moreover, if the real part of z is larger than v,  we obtain a new type of oscillatory 
long-wavelength instability, which is characterized by complex eddy viscosity with 
negative real part. 

We want to prove this for a particular case of the flow (4.6). The conditions for 
such instability are 

(4.10~) 
(4.10b) 

which represent the conditions for existence of complex roots with positive real part 
for equation (4.8). 

4.3.1. A special case of oscillatory instability 

T~ + T~ < -v2nT2, 
(TI + T3)2 + (21 - A3)2 - 2(A1 - A,)( - T3) < 0, 

Let us consider the special subclasses of (4.6) with 

(4.11) 
A3 > 3/2, A3/3 < A1 < A3 - 1, 
0 < P: < (321 - 23)2:/[211 + A3(23 - A111, 

Cl: = 2 A ( l  + P223L 

and the following direction: 

(4.12~) 
(4.12b) 
(4.12~) 

From condition 1111 = 1 we obtain that v must be 

(4.13) 

(For the selected parameters Al,&,Pl,fi3 the expression under the square root is 
positive.) For direction (4.12) TI  and T3 take the following simple form 

2 2 112 . V = [I/(& - 21) - P:/(221)~ - &/A31 

(4.14) 
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Thus, TI + T3 = -n;~-~[p?(2 i1) - '  - p i A y l ] ,  or because of (4.12~):  

T, + T~ = -n$-* < -v2nT2. 

The last inequality is true because 
2 2 - *  n2/v - A~ - A1 > 1. 

For the justification of (4.10b), we rewrite it in the following form: 

[Ti + T3 + (A3 - - 4(A3 - IUl)T3 < 0. 

Using (4.14) and (4.15), we obtain 

-4(& - A1)2p;/Ib3 < 0, 
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(4.15) 

which is identically true. Thus, for the wide class of flows in the specific direction 
(4.12) the oscillatory instability exists. 

4.3.2. The j o w  u:! = 01 sin x1 + O~ sin 2x1 + a3 sin xj + a4 sin 2x3 
To illustrate the previous result we investigate the flow 

(4.16) 1 u1 = 0, 
u2 = 01 sin x1 + g2 sin 2x1 + a3 sin x3 + a4 sin 2x3, 
u3 = 0. 

For this flow the parameters A; and pi,i = 1,3, (4.7) take the following simple form: 
Aj = (402 + 0;+1)/8, pi = 30?0;+1/16,i = 1,3. If we select aj, j = 1, ..., 4 such that 
conditions (4.11) for A i ,  pi, i = 1,3, hold then we can obtain oscillatory instability in 
the fixed direction (4.12). 

Let A; and p,,i = 1,3, be A, = 18,pl = 6$,A3 = 20,p3 = 245, which corresponds 
to 

(TI 2, 02 11.3, ( ~ 3  m 6.3, 04 m 0.6. (4.17) 
From (4.13) we obtain the parameter v 

v = 0.6. (4.18) 

Flow (4.16) with (4.17) and v given by (4.18) has a complex growth rate with positive 
real part for the direction nl = -0.3,nz = 0.9,n3 = -0.3. From (4.8) and (2.32) we 
obtain the growth rate 

S(*) = { & [( T1 + T3)2 + (11 - 1-3)2 - 2(11 - A3)( TI - T3)] ''* - (TI + T3)} niv-' - v 

where Ti is defined by (4.9). In the case considered TI = -4, T3 = 2 and S(2) = 
1.9 f 5.0i. The plots of the real and the imaginary parts of Sf'(Q,cp) = 1.9 + 5.0i are 
shown on figure 2(a) and figure 2(b), respectively. 

4.3.3. The j o w  u2 = sin x1 + 01 sin 2x1 + 02 sin x3 
The conditions obtained in 54.3.1 are not necessary for oscillatory instability to 

exist. The following simpler flow not satisfying the conditions (4.11) and (4.13) can 
also give the same type of instability: 

u1 = 0, 
u2 = sinxl + 01 sin2x1 + 02 sinx3, 
u3 = 0, 

(4.19) 
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FIGURE 2. (a)  The real part and (b)  the imaginary part of the growth rate Sf). 

for example, for el = c2 = 2, v = 0.1. The plot of the real and imaginary parts of the 
growth rate are shown on figure 3(a) and figure 3(b), respectively. 

In figure 4 the product of the imaginary and real parts is shown where the latter 
is positive. The domain where the value of the function is not equal to zero is the 
oscillatory instability domain. The flow (4.19) is investigated for different values of 01 

and c2. For this flow the parameters ii and pi, i = 1,3, (4.7) take the following simple 
form : 21 = (4+0:)/8, pl = 3c1/16, il = 0,2/2, = 0. The maximal value of the real 
part of the growth rate S in terms of the variables 8, cp for the selected value of the v is 
obtained by direct calculations. Varying the value of the v,  one can find a case where 
max[Re S ]  = 0 . This is the maximum of the marginal stability curve. The growth rate 
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FIGURE 3. (a) The real part and (b) the imaginary part of the growth rate for the flow 
u2 = sin x1 + 2 sin 2x1 + 2 sin xx. 

at this point v,., is equal to zero and real only. Thus, the complex growth rate does not 
correspond to the most dangerous instability. These numerical calculations are done 
by using the software Mathematics. Using this program for the different values of ~1 
and cr2 we obtained the critical values of the v. The results are shown in table 1. 

5. Concluding remarks 
We obtained the general equation (2.40) that determines the long-wave asymptotics 

of the growth rates. It was found that the instability is connected with the positive 
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FIGURE 4. The product of the positive real part (we replace the negative real part by zero) and the 
imaginary part of the growth rate for the flow u2 = sin x1 + 2 sin 2x1 + 2 sin x3. 

c1 0.1 1 1.41 2 10 100 
c2 

0.1 0.7042 0.7973 0.8817 1.0090 3.6050 35.362 
1 .o 0.1083 0.5504 0.6733 0.8317 3.5354 35.356 
1.41 0.7058 0.6123 0.4998 0.5813 3.4638 35.348 
2.0 1.2246 1.1721 1,1178 0.9996 3.3170 35.334 

10 7.0353 7.0268 7.0182 7.0000 6.0826 34.648 
100 70.707 70.706 70.705 70.704 70.619 61.234 

TABLE 1. The critical value of v for the different values of cri, i = 1,2, in the flow 
u2 = sin XI + cI sin 2x1 + cr2 sin x3 

real part of the coefficient S(2) ,  hence the growth rate is proportional to 1 1 ~ 1 ~ .  This 
type of instability is known as ‘negative eddy viscosity’ (Kraichnan 1976). 

Coinciding with the results of Dubrulle & Frisch (1991), we found that the wavevec- 
tor of the most dangerous disturbances is inclined to the direction of the basic stream 
for flows of both types (1.1) and (1.2). An unexpected phenomenon has been discov- 
ered: an oscillatory instability with the real part of the growth rate proportional to 

It is necessary to note that the possibility of a complex growth rate (‘com- 
plex eddy viscosity’) in the three-dimensional case is a natural consequence of the 
non-self-adjointness of the general eigenvalue problem formulated by Dubrulle & 
Frisch (1991). Recently, some examples of flows with complex eddy viscosity (though 
with negative Re S ( 2 ) )  were found for some three-dimensional flows (Wirth 1994; 
Wirth, Gama & Frisch 1995). 

In conclusion, let us discuss the nonlinear aspects of the new oscillatory instability. 
There is a crucial difference between the oscillatory instability of flows periodic in 
one direction and the oscillatory instability found in the present paper. In the former 

IKl2. 
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case, the frequency of long-wave oscillations o - k', and the nonlinear regimes are 
governed by a perturbed Korteveg-de Vries equation (Nepomnyashchy 1995). In 
the latter case, the frequency of long-wave oscillations o - k 2 .  A similar situation 
occurred in a study of oscillatory side-band instabilities in Marangoni convection with 
deformable interface (Golovin et al. 1995). The evolution of amplitudes of interacting 
waves with different wavenumbers can be described at the leading order of the 
perturbation theory by a system of Landau equations with cubic interaction terms. 

In conclusion, let us emphasize that the Kolmogorov flow and its simplest general- 
izations turn out to be not quite typical in several aspects, including the absence of 
a primary oscillatory instability and a specific orientation of the wavevectors of the 
most dangerous disturbances. These peculiarities may strongly influence the nonlinear 
evolution of the flow. The extension of the class of flows investigated may clarify 
the characteristic mechanisms of spontaneous generation of large-scale structures by 
small-scale flows. 

We are indebted to U. Frisch and S. Gama for useful discussions. 

REFERENCES 
BORLJE, V. & ORSZAG, S. A. 1996 Numerical study of three-dimensional Kolmogorov flow at high 

Reynolds numbers. J. Fluid Mech. 306, 293. 
BRUTYAN, M. A. & KRAPIVSKY, P. L. 1991 Stability of periodic unidirectional flows in three 

dimensions. Phys. Lett. A 152, 211. 
DUBRULLE, B. & FRISCH, U. 1991 Eddy viscosity of parity-invariant flow. Phys. Rev. A 43, 5355. 
E, W. & SHU, C.-W. 1993 Effective equations and the inverse cascade theory for Kolmogorov flows. 

Phys. Fluids A 5, 998. 
GOLOVIN, A. A,, NEPOMNYASHCHY, A. A., PISMEN, L. M. & RIECKE, H. 1995 Steady and oscilla- 

tory side-band instabilities in Marangoni convection with deformable interface. Submitted to 
Physica D. 

GOTOH, K., YAMADA, M. & MIZUSHIMA, J. 1983 The theory of stability of spatially periodic parallel 
flows. J .  Fluid Mech. 127, 45. 

HENON, M. & SCHOLL, H. 1991 Lattice-gas simulation of a nontransverse large-scale instability for 
a modified Kolmogorov flow. Phys. Rev. A 43, 5365. 

WICHNAN, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417. 
KRAICHNAN, R. H. 1976 Eddy viscosity in two and three dimensions. J .  Atmos. Sci. 33, 1521. 
MESHALKIN, L. D. & SINAI, IA. G. 1961 Investigation of the stability of a stationary solution of 

a system of equations for the plane movement of an incompressible viscous liquid. J .  Appl. 
Math. Mech. 25, 1700. 

NEPOMNYASHCHY, A. A. 1976 On the stability of secondary flows of a viscous fluid in an unbounded 
space. J .  App l .  Math. Mech. 40, 836. 

NEPOMNYASHCHY, A. A. 1995 Nonlinear waves generated by long-wave instability of parallel periodic 
flows, unpublished. 

SHE, Z. S. 1987 Metastability and vortex pairing in the Kolmogorov flow. J .  Phys. Lett. A 124, 161. 
SIVASHINSKY, G. 1985 Weak turbulence in periodic flows. Physica D 17, 243 
SHTILMAN, L. & SIVASHINSKY, G. 1986 Negative viscosity effect in three dimensional flows. J .  Phys. 

WIRTH, A. 1994 Complex eddy-viscosity : a three-dimensional effect. Physica D 76, 312. 
WIRTH, A., GAMA, S. & FRISCH, U. 1995 Eddy viscosity of three-dimensional flow. J .  Fluid Mech. 

YAKHOT, V. & SIVASHINSKY, G. 1987 Negative-viscosity phenomena in three-dimensional flows. 
Phys. Rev. A 35, 815. 

YUDOVICH, V. I. 1966 On the instability of parallel flows of viscous incompressible fluid with respect 
to spatially periodic disturbances. In Numerical Methods of Solving Problems of Mathematical 
Physics, pp. 242-249. Moscow, Nauka. In Russian. 

(Paris) 47, 1137. 

288, 249-264. 


